REGULADOR AUTOMÁTICO DEL FACTOR DE POTENCIA

RPC 8LGA

(Código A250600006CF025)

MANUAL OPERATIVO

Atención!

- ✓ Leer atentamente el manual antes de la utilización y la instalación.
- ✓ Este aparato debe ser instalado por personal cualificado, respetando las normas implantación, con el fin de evitar daños a personas o cosas.
- ✓ Antes de cualquier intervención sobre el instrumento, quitar tensión las entradas de medida y de alimentación y cortocircuitare los transformadores de corriente.
- ✓ El fabricante no asume responsabilidad en caso de utilización abusiva del dispositivo.
- ✓ Un interruptor de circuito debe ser incluido en la instalación eléctrica del edificio. Debe ser instalado cerca del equipo y a poca distancia del operador.
- ✓ Debe estar marcado como dispositivo de desconexión del equipo: IEC / EN 61010-1 § 6.11.2.1.

ÍNDICE

- 1. Introducción
- 2. Descripción
- 3. Función de las teclas frontales
- 4. Indicaciones sobre display
- **5.** Modos de funcionamiento
 - 5.1. Modo MAN/AUT
 - **5.2**. Modo manual (MAN)
 - 5.3. Modo automático (AUT)
- 6. Medidas
- 7. Bloqueo teclado
- 8. Expansibilidad.
- 9. Puerta de programación IR
- **10.** Enfoque parámetros por PC
- 11. Enfoque parámetros desde el panel frontal
- **12.** Enfoque rápida TA
- 13. Tabla de los parámetros
- 14. Alarmas

14.1. Descripción de los alarmas

- 14.2. Propiedad de default de los alarmas
- 15. Menú mandos
- 16. Utilización de la chiavetta WIFI CX02
- 17. Instalación
- **18.** Esquemas de conexión
- **19.** Disposición bornes
- 20. Dimensiones mecánicas y perforación panel
- 21. Características técnicas

1. Introducción

El regulador del factor de potencia automática RPC 8LGA ha sido diseñado para ofrecer funciones con tecnología de última generación para el factor de potencia aplicaciones de compensación. Construido con componentes dedicados y extremadamente compactos, el RPC 8LGA combina lo moderno diseño del panel frontal con la instalación práctica y la posibilidad de expansión de la parte trasera, donde un módulo de expansión puede ser ranurada. La pantalla LCD proporciona una interfaz de usuario clara e intuitiva.

2. Descripción

- Controlador automático del factor de potencia.
- Montaje a panel, contenedor standard 144x144mm.
- Pantalla LCD retroiluminada.
- Versiones:
 - o 8LGA con 8 peldaños, expansible a 14 max
- 5 teclas de navegación por funciones e impostaciones.
- Mensajes de alarma con textos en 6 lenguas.
- Autobús de expansión con 2 slot por módulos de expansión:
 - Interfaces de comunicación RS232, RS485, USB, Ethernet.
 - Salís a relés adicionales
- Elevada esmero de las medidas en verdadero valor eficaz (TRMS)
- Vasta gama de medidas disponibles, inclusivas de THD de tensión y corriente con análisis de las individuales armónicas hasta el15.mo orden.
- Entrada de medida tensión separada por la alimentación, utilizable con TV en aplicaciones de mediana tensión.
- Alimentación auxiliar a amplio intervalo de tensión (100-440 VAC)
- Interfaz de programación óptica fachada, aislado galvánicamente, alta velocidad, impermeable, compatible con llavín USB y WIFI.
- Protección impostaciones vía contraseña a 2 niveles.

- Copia de seguridad de las impostaciones originales.
- Sensor de temperatura incorporado.

3. Función de las teclas frontales

- Selección a rotación entre las medidas disponibles. También usado por el acceso a las minutas de programación.
- \bigtriangledown Sirven para programar valores y seleccionar peldaños.
- Sirve para seleccionar la modalidad operativa automática.
- Sirve para seleccionar la modalidad operativo manual

4. Indicaciones sobre el display

5. Modos operativos

5.1. Modos MAN y AUT

- Los iconos AUT y MAN indican la modalidad de funcionamiento automático o manual.
- Para cambiar las modalidades de funcionamiento automático/manual mantener

presionados las teclas o por 1 según.

• La modalidad de funcionamiento queda también memorizada en ausencia de la tensión de alimentación.

5.2. Modo Man

- Cuando la unidad está en modo manual, puede seleccionar uno de los pasos y conectado de forma manual o desconectarlo.
- Además del icono específico, la pantalla alfanumérica muestra al hombre con el fin de poner de relieve la condición de modo manual. Prensa mode para ver las otras mediciones, como de costumbre.

- Mientras que en la pantalla aparece el hombre, es posible seleccionar el paso para estar encendido o apagado. Para seleccionar un paso, utilice los botones ▲ o ▼. El paso seleccionado parpadeará rápidamente.
- Prensa mode para activar o desactivar el paso seleccionado.
- Si el paso seleccionado todavía no ha agotado el tiempo de reconexión, el
- Icono 🏟 parpadeará para indicar que la transacción tiene que ser aceptada y se llevará a cabo tan pronto como sea posible.
- La configuración manual de los pasos se mantiene incluso cuando se quita la tensión de alimentación. Cuando se restablezca el suministro, el estado original de los pasos que se restaura.

5.3. Modo AUT

• En modo automático, el controlador calcula la configuración óptima de pasos de condensadores con el fin de llegar a la $\cos\varphi$ conjunto.

• Los criterios de selección se tienen en cuenta muchas variables, tales como: la potencia de cada paso, el número de operaciones, el total tiempo de uso, el tiempo de reconexión, etc.

• El controlador muestra la inminente conexión o desconexión de los pasos con el parpadeo de su número de identificación (izquierda).El parpadeo puede durar en los casos en los que la inserción de un paso no es posible debido al tiempo de reconexión (descarga tiempo del condensador).

• El dispositivo inicia correcciones automáticas cuando hay una petición media potencia reactiva (delta-kvar) más alto que 50% del paso más pequeño, y el cosφ medido es diferente del punto de ajuste.

6. Medidas

• El controlador RPC 8LGA proporciona un conjunto de mediciones que aparecen en la pantalla alfanumérica, conjuntamente con el $\cos \varphi$ corriente que siempre se visualiza en la pantalla principal.

• Pulse la tecla mode para desplazarse a través de las medidas en la rotación.

• Después de 30 segundos sin pulsar ningún botón, la pantalla vuelve automáticamente a la medición predeterminado definido por la P.47.

• Si P.47 se encuentra en la ROT, a continuación, las medidas giran automáticamente cada 5 segundos.

• En la parte inferior de la lista de medidas, es posible ajustar el punto de ajuste de la $\cos\varphi$, que actúa sobre el mismo valor establecido con P.19.

• A continuación se muestra una tabla con las mediciones mostradas.

Medida	Icono	Descripcion
Delta-kvar	Δkvar	KVARs necesarios para
		alcanzar el punto de ajuste
		cosphi. Si delta-kvar es
		condensadores positivos
		deben insertarse, si es
		negativo para desconectarse.

•	kvar	Kvar total de la planta.
A	ΔSTEP	Número de pasos iguales para lograr el factor de potencia objetivo
	mode	1
Voltaje ▼	V V HI	Voltaje RMS de la corriente de la planta. El valor máximo de voltaje medido
	mode	•
Corriente ▼	A A HI	Corriente RMS de la tensión de la planta. El valor máximo de corriente masured.
PF semanal	WPF PF	Factor de potencia medio semanal. Instantánea del factor de potencia total.
Tapa de THD. TC.HI El	THDC	Condensadores de distorsión armónica total (THD) de la corriente.
	THD.	valor máximo medido
Temperatura	° C ° F ° FHI ° CHI	Temperatura de sensor interno. El valor máximo de temperatura medido
Voltaje THD	THDV	Distorsión armónica% Total (THD) de la tensión de la planta.
	VH02 VH15	% Tensión contenido armónico de 2.º orden hasta 15.th
THD de corriente	THDI	La distorsión armónica total% (THD) de la corriente de la planta.

	IH02 iH15	% De contenido de armónicos de corriente de hasta 2.º orden 15.th cosphi
punto fijo	IND PAC	Ajuste del punto de ajuste cosφ deseada (igual que P.19).
reductor de potencia	%	Paso poder residual, como un porcentaje de la potencia nominal conjunto.
Paso mostrador	OPC	contador de operación del paso
paso horas	Н	Horas de servicio de la inserción pasó.

Estas medidas se muestran sólo si el Paso función de recorte está activado (P.25 = ON) y la contraseña avanzada está habilitado y entró.

7. Bloqueo del teclado

• Una función que excluye toda modificación de los parámetros de funcionamiento pueden ser activados; visualización de medición todavía se proporciona en cualquier caso.

• Para bloquear y desbloquear el teclado, pulse y mantenga pulsada la tecla mode A continuación, pulse la tecla ▲ tres veces y dos veces la tecla ▼ y después de que la liberación.

• La pantalla mostrará LOC cuando el teclado está bloqueado y UNL cuando está desbloqueado.

• Cuando se habilita el bloqueo, no es posible realizar las siguientes operaciones:

- La operación entre el modo automático y manual
- Acceso a menús de configuración

• Al intentar llevar a cabo las operaciones anteriores, la pantalla ver LOC para indicar el estado de bloqueo del teclado.

8. Capacidad de expansión

• Gracias al bus de expansión, la RPC 8LGA se puede ampliar con dos módulos de expansión serie.

• Los módulos de expansión compatibles se pueden agrupar en las siguientes categorías:

Pasos adicionales

- Módulos de comunicación
- Los módulos de E / S digitales
- Para insertar un módulo de expansión:
 - Eliminar la fuente de alimentación al regulador de RPC 8LGA.
 - Retirar la cubierta protectora de la ranura de expansión.
 - Insertar el gancho superior del módulo de expansión en el orificio de fijación en la parte superior de la ranura de expansión.
 - Girar hacia abajo el cuerpo del módulo, insertar el conector en el autobús.
 - Empujar hasta que el clip inferior encaje en su alojamiento.
 - Cuando el regulador RPC 8LGA está encendido, reconoce automáticamente el módulo de expansión que se han montado.
 - Los módulos de expansión proporcionan recursos adicionales que se pueden utilizar a través de los menús de configuración dedicados.
 - Los menús de configuración relacionados con las expansiones son siempre accesible, incluso si los módulos de ampliación no se montan físicamente.
 - La siguiente tabla indica qué modelos de módulos de expansión son compatibles:

9. puerto de programación IR

- Los parámetros del controlador RPC 8LGA pueden configurarse a través del puerto óptico frontal, utilizando el código de IR-USB A25060046580008 llave de programación, o con el dongle WiFi IR-código A25060046580009.
- Este puerto de programación tiene las siguientes ventajas:
 - Puede configurar y servicio al regulador RPC 8LGA sin acceso a la parte trasera del dispositivo o tener que abrir el panel eléctrico.
 - Se está aislada galvánicamente de los circuitos internos del regulador de RPC 8LGA, garantizando la máxima seguridad para el operador.
 - o la transferencia de datos de alta velocidad.
 - IP54 de protección del panel frontal.
 - limita la posibilidad de acceso no autorizado a la configuración del dispositivo, ya que es necesario tener el IR-USB o IR-WI-Dongles FI.
- Sólo tiene que mantener la llave hasta el panel frontal, que conecta los enchufes a los conectores correspondientes, y el dispositivo será reconocido, como se muestra por el LED LINK en el green dongle programación de parpadear.

10. Ajuste de parámetros con PC

• Se puede utilizar el software de *monitoreo remoto* para transferir *PFC* (previamente programada) los parámetros de

configuración de la RPC8LGA controlador en el disco duro del PC y viceversa vicio.

• El parámetro puede ser transferida parcialmente desde el PC al controlador RPC 8LGA, transferir sólo los parámetros de los menús especificados.

11. Ajuste de parámetros (configuración) del panel frontal

Para acceder al menú de programación (configuración):

- Para introducir los parámetros de programación de la unidad debe estar en modo de prueba (primera programación)
- Desde la pantalla de medición normal, mantenga pulsada la tecla MODE durante 3 segundos para acceder al menú principal.SET se muestra en la pantalla principal.
- Si ha establecido la contraseña (P.21 = ON) en lugar de la pantalla muestra SET PAS (solicitud de introducción de la contraseña).Ajuste el numérico contraseña utilizando ▲ ▼ y presione para pasar al siguiente dígito.
- Si la contraseña es correcta, la unidad mostrará OKU u OKA dependiendo de la contraseña introducida es usuario o el nivel avanzado.
- La contraseña se puede definir con parámetros P.22 y P.23.Por defecto de fábrica es 001 y 002, respectivamente.
- Si la contraseña no es correcta la unidad mostrará ERR.
- •Después de haber introducido la contraseña, el acceso está habilitado hasta que se vuelva a inicializar la unidad o durante 2 minutos sin presionar ninguna llave.
- Después de haber introducido la contraseña, repita el procedimiento para acceder a la configuración de parámetros.
- Pulse ▲ ▼ para seleccionar el submenú que desee (ADV BAS◊ ◊ ALA ...) que se muestra en la pantalla alfanumérica.
- En la siguiente tabla se muestran los submenús disponibles:

Descripción

BAS: El acceso al menú Base

ADV: Acceso al menú Avanzado

ALA: Acceso al menú de alarma

FUN: El acceso al menú Ethernet

CMD: El acceso al menú de comandos

CUS: El acceso al menú personalizado

SAVE: Sale de ahorro de modificaciones.

EXIT: Las salidas sin guardar (cancelar)

Prensa 🔛 para acceder al submenú.

• Cuando se está en un submenú, la pantalla principal muestra el código del parámetro seleccionado (por ejemplo, P.01), mientras que el muestra cifras / letras en la parte inferior de la pantalla muestra el valor del parámetro y / o descripción.

• Prensa Repara avanzar en la selección de artículos (como desplazamiento a través de parámetros P.01 & P02 P03 ...), o

Prensa MODE para volver al parámetro anterior.

• Mientras se selecciona un parámetro, con ▲ ▼ puede aumentar / disminuir su valor.

Una vez que llegue al último parámetro del menú, pulsando **ter** una vez más, volverá a la selección del submenú.

• Usando los botones \blacktriangle v seleccione Guardar para guardar los cambios o EXIT para cancelar.

• Por otra parte, dentro de la programación, presiona por tres segundos, se guardará los cambios y salir directamente.

• Si el usuario no pulsa ninguna tecla durante más de 2 minutos, el sistema sale de la configuración automática y se remonta a visualización normal sin guardar los cambios realizados en los parámetros (como EXIT).

• NB: una copia de seguridad de los datos de configuración (configuración que se pueden modificar mediante el teclado) se puede guardar en la memoria EEPROM

del controlador RPC 8LGA.Estos datos se pueden restaurar cuando sea necesario en la memoria de trabajo. La copia de seguridad de datos "copia" y

"restaurar" comandos se puede encontrar en el menú Comandos.

12. El rápido CT puesta a punto

- Cuando el valor de CT no se conoce y sólo se utiliza en el momento de la instalación, el parámetro P.01 para CT primario puede siendo fijado en OFF mientras todos los demás se pueden programar.
- En este caso, durante la instalación del sistema y una vez que el controlador está encendido, la pantalla mostrará un CT intermitente (actual Transformador). Pulsando ▲ ▼ del primario del TC se puede ajustar directamente.
- Una vez programada, pulse 🖬 para confirmar. La unidad almacenará el ajuste en la P.01, y reiniciar directamente en el modo automático.

13.Parámetro

• A continuación se enumeran todos los parámetros de programación en forma de tabla. Para cada parámetro se indican la posible gama de ajustes y predeterminado de fábrica, así como una breve explicación de la función del parámetro. La descripción del parámetro se muestra en la pantalla puede en algunos casos ser diferente de lo que se informa en la tabla a causa de la reducción del número de caracteres disponible. El código de parámetro se puede utilizar sin embargo, como una referencia.

• Nota: los parámetros mostrados en la tabla con un fondo sombreado son *esenciales* para el funcionamiento del sistema, por lo que representar la programación mínima requerida para la operación.

MENÚ DE BASE

CODIGO	DESCRIPCION	ACC	UoM	DEF	DISTANCIA
P. 01	Primario del TC	Usr	Α	OFF	OFF/110.000
P. 02	Secundario del TC	Usr	A	5	1/5
P. 03	CT fase leer	Usr		L1	L1/L2/L3
P. 04	Polaridad del cableado de CT	Usr		Aut	Aut/Dir/Inv
P. 05	Fase lectura del voltaje	Usr		L2-L3	L1-L2/L2-L3/L3-L1 L1- N/L2-N/L3-N
P. 06	Más pequeño reductor de potencia	Usr	Kvar	1.00	0.1010000
P. 07	Tensión nominal de instalación	Usr	V	400V	50 50000
P. 08	Frecuencia nominal	Usr	Hz	Aut	Aut 50Hz 60Hz Var
P. 09	Tipo de reconexión	Adv	Sec	60	130000
P. 10	Sensibilidad	Usr	sec	60	11000
P. 11	Paso 1 función	Usr		OFF	OFF/132/ON/NOA/NCA FAN/MAN/AUT/A01A12
P. 12	Paso 2 funciones	Usr		OFF	=
P. 13	Paso 3 funciones	Usr		OFF	=
P. 14	Paso 4 funciones	Usr		OFF	=
P. 15	Paso 5 funciones	Usr		OFF	=
P. 16	Paso 6 funciones	Usr		OFF	=
P. 17	Paso 7 funciones	Usr		OFF	=
P. 18	Paso 8 funciones	Usr		OFF	=
P. 19	Cos-phi consigna	usr		0.95 IND	0.50Ind-0.50 Cap
P. 20	Lenguaje de los mensajes de alarma	Usr		ENG	ENG/ITA/FRA/SPA/POR/ DEU

- P.01 El valor de la corriente primaria del transformador. Ejemplo: con la TC 800/5 establecer 800. Si se establece en OFF, después del encendido, el dispositivo le solicitará establecer el TC y permite el acceso directo a este parámetro.
- P.02 Valor del secundario de los transformadores de corriente. Ejemplo: con la TC 800/5 conjunto 5.
- P.03 Define en qué fase del dispositivo lee la señal actual. El cableado de las entradas de corriente debe coincidir con el valor establecido para este parámetro. Es compatible con todas las combinaciones posibles de los parámetros P.05.
- P.04 Lectura de la polaridad de la conexión de la CT.
 AUT = polaridad se detecta de forma automática durante el encendido. Sólo puede utilizarse cuando se trabaja con una sola CT y cuando el sistema no tiene dispositivo

generador. Dir = Detección automática desactivada. Conexión directa. Inv = Detección automática desactivada. Una conexión inversa.

- P.05 Define en el cual y en el número de fases del dispositivo lee la señal de tensión. El cableado de las entradas de tensión debe coincidir con el ajuste para este parámetro. Es compatible con todas las combinaciones posibles de los parámetros P.03.
- P.06 Valor en kvar del paso más pequeño instalado (equivalente al peso del paso 1).La potencia nominal de la batería de condensadores prevista en la Calificación voltaje especificado en P.07 (ejemplo: paso 10kvar-460V suministra 400V → 10 x (400).2 / (460) 2→ establecer 7,5kvar).
- P.07 Instalación tensión nominal, que se entrega en P.06 potencia especificada.
- P.08 Frecuencia de trabajo del sistema: Aut = selección automática entre 50 y 60 Hz en el encendido. 50Hz = fija a 50 Hz. 60Hz = fijado a 60 Hz. Var = variable medido y ajustado periódicamente.
- P.09 Tiempo mínimo que debe transcurrir entre la desconexión de un solo paso y la posterior reconexión tanto en el hombre o en el modo AUT.
 - Durante este tiempo, el número de la etapa en la página principal está parpadeando.
- P.10 Sensibilidad de conexión. Este parámetro establece la velocidad de reacción del controlador. Con valores pequeños de la regulación P.10 es rápido (Más precisa alrededor del punto de ajuste, pero con más swithchings paso).Con los valores de altura en lugar vamos a tener reacciones más lentas de la regulación, con

un menor número de conmutaciones de los pasos. El tiempo de retardo de la reacción es inversamente proporcional a la petición de pasos para llegar al punto de ajuste: tiempo de espera = (sensibilidad / número de pasos necesarios).

Ejemplo: ajuste de la sensibilidad a los años 60, si solicita la inserción de un paso de 1 peso se esperan 60 (60/1 = 60).Si en lugar de servir a una

Se espera total de 4 pasos 15s (60/4 = 15).

P11... P18 - Función de los relés de salida 1... 8: OFF = No se utiliza.1 ... 32 = Peso de la etapa. Este relé conduce un banco de capacitores el que el poder es n veces (n = 1... 32) define la potencia más pequeña con P.06 parámetro. ON = Siempre activado.

NOA = alarma normalmente desenergizado. El relé se activa cuando cualquier alarma con la propiedad *de alarma global* surge.

NCA = alarma normalmente energizado. El relé se desactiva cuando cualquier alarma con la propiedad *de alarma global* surge.

FAN = El relé controla el ventilador de enfriamiento.

MAN = relé se activa cuando el dispositivo está en modo MAN.

AUT = relé está excitado cuando el dispositivo está en modo AUT.

A01... A12 = El relé se activa cuando la alarma está activa especificada.

- P.19 Valor teórico (valor objetivo) de la $\cos\varphi$. Se utiliza para aplicaciones estándar.
- P.20 Lengua de desplazamiento mensajes de alarma.

MENU AVANZADO

CODIGO	DESCRIPCION	ACC	UoM	DEF	DISTANCIA
P. 21	Habilitación de	Adv		OFF	OFF/ON

	contraseña				
P. 22	Contraseña de	Usr		001	0-999
	usuario				
P. 23	Avanzada de	Adv		002 (*)	0-99
	contraseña				
P. 24	Topo de cableado	Usr		3PH	3PH three-phase
					1PH single-phase
P. 25	Paso recorte	Usr		ON	ON Enabled
					OFF Disable
P. 26	Aclaramiento de	Usr		0.00	0-0.10
	consigna				
P. 27	Aclaramiento de	Usr		0.00	0-0.10
	consigna				
P. 28	Paso modo	Usr		STD	STD Estándar
	inserción				LIN Linear
P. 29	La cogeneración	Adv		OFF	OFF/
	cos- phi				0.20 IND – 0.50 CAP
P. 30	Desanexión	Usr	sec	OFF	OFF/1-600
	sensibilidad				
P. 31	Paso desconexión	Usr		OFF	OFF Disabled; On Enable
D 33	en el hombre	A .1	0/	50	055 / 0 450
P. 32	Condensador de	Adv	%	50	OFF / 0150
	umprai de alarma				
	de sobrecarga de				
	Corriente Sobrocorgo do	۸ du /	0/	02	055 /0 200
P. 35	Sobrecarga de	Auv	70	83	OFF /0200
	inmediata limite				
D 2/	VT Primaria	ller	V	055	OFE /50-50000
D 25	VT Secundaria	Usr	V	100	50-500
P.35		Usi	v	001 °C	°C °F
F. 30	de la temperatura	031		C	С, Т
P 37	Ventilador de	۸dv	0	25	0 212
1.57	temperatura de	Auv		25	0212
	inicio				
P 38	Ventilador	۸dv	0	20	0 212
1.50	temperatura de	Auv		20	0212
	narada				
P 39	Umbral de alarma	VhA	0	55	0 212
1.55	de temperatura	7.00		33	0212
P 41	Umbral de alarma	VhA	%	110	OFE/90 150
1.41	de tensión máxima	7.0.0	/0	110	011/50 150
Р <u>4</u> 2	Umbral de alarma	νhΔ	%	90	OFF/60_110
1.72	de voltaie minimo	7.00	70	50	011/00110
Р 43	THD umbral de	Δdv	%	6	OFF/1 250
	alarma V	7.00	70		011/1250
1		1	1	1	

P. 44	THD Umbral de alarma I	Adv	%	12	OFF/1250
P. 45	Intervalo de mantenimiento	Adv	h	9000 8760(**)	1-3000
P. 46	La función de grafico de barras	Usr		Kvar inst/tot	Kvar ins/tot / Corr att/nom / Delta kvar ins/tot
P. 47	Por defecto medida auxiliar	Usr		Week TPF	Deltakvar / V / A / Week TPF / Cap. Current / Temp / THDV / THDI / ROT
P. 48	Luz de fondo intermitente en caso de alarma	Usr		OFF	OFF ON
P. 49	Dirección de nodo de serie	Usr		01	01-255
P. 50	La velocidad de serie	Usr	Bps	9.6k	1.2k / 2.4k / 4.8k / 9.6k / 19.2k / 38.4k
P. 51	Formato de datos	Usr		8 bit –n	8 bit, no parity / 8 bit, odd / 8bit, even 7 bit, odd / 7 bit, even
P. 52	Bits de parada	Usr		1	1-2
P. 53	Protocolo	Usr		Modbus RTU	Modbus RTU / Modbus ASCII
P. 54	Numero de inserciones para el mantenimiento	Adv	kcnt	OFF	OFF / 160
P. 55	Paso 9 funciones	Usr		OFF	=
P. 56	Paso 10 funciones	Usr		OFF	=
P. 57	Paso 11 funciones	Usr		OFF	=
P. 58	Paso 12 funciones	Usr		OFF	=
P. 59	Paso 13 funciones	Usr		OFF	=
P. 60	Paso 14 funciones	Usr		OFF	=

- P.21 Si se establece en OFF, la gestión de contraseñas está desactivada y cualquier persona tiene acceso a la configuración y del menú.
- P.22 Con P.21 habilitado, este es el valor que especifique para la activación de acceso a nivel de usuario. Véase el capítulo de acceso contraseña.
- P.23 En cuanto a P.22, con referencia al acceso de nivel avanzado.(*) Valor disponible sólo si el controlador no está instalado en el ICAR gabinete
- P.24 Número de fases del panel de corrección de potencia.
- P.25 Permite la medición de la potencia real de la etapa, se realiza cada vez que se cambian en la medida se calcula, como. la medición de la corriente se hace referencia a toda la carga de la planta. Se ajusta la potencia medida de los pasos (recortado) después de cada conmutación y se visualiza en la pantalla de estadísticas vida paso. Cuando esta función está activada, se inserta una pausa de 15 segundos

entre la conmutación de un paso y el siguiente, necesario medir la variación de la potencia reactiva.

- P.26 P.27 Tolerancia alrededor del punto de ajuste. Cuando el $\cos\varphi$ está dentro del rango delimitado por estos parámetros, en el modo AUT el dispositivo no se conecta pasos / desconexión, incluso si el delta-kvar es mayor que el paso más pequeño.
- P.28 el modo de inserción pasos Selección.
 El modo estándar Funcionamiento normal con la libre elección de los pasos
 El modo lineal los pasos están conectados en progresión desde la izquierda hacia la derecha sólo después el número de paso y de acuerdo con el
 LIFO (último en entrar, primero en salir) lógica. El controlador no se conectará un paso cuando las medidas del sistema son de diferentes calificaciones y conectando

el siguiente paso, se sobrepasaría el valor de consigna.

- P.29 consigna utilizar cuando el sistema está generando potencia activa al proveedor (con factor de potencia / potencia activa negativa).
- P.30 Sensibilidad de desconexión. Igual que el parámetro anterior, pero relacionado con la desconexión. Si se establece en OFF la desconexión tiene el mismo tiempo de reacción de establecimiento de conexión con el parámetro anterior.
- P.31 Si está en ON, cuando se cambia de modo de AUT al modo MAN, pasos son desconectados de forma secuencial.
- Nivel de disparo de la protección de sobrecarga condensadores (A08 alarma), que surgirá después de un tiempo de retardo integral, inversamente proporcional a la P.32 valor de la sobrecarga.

Nota: Puede utilizar esta protección sólo si los condensadores no están equipados con dispositivos de filtración tales como inductores o similares.

- P.33 Umbral a partir del cual se pone a cero el retardo integral para el disparo de la alarma de sobrecarga, provocando la intervención inmediata de la*A*08 alarma.
- P.34 P.35 Datos de los TT finalmente utilizados en los diagramas de cableado.
- P.36 Unidad de medida de la temperatura.
- P.37 P.38 Iniciar y detener la temperatura para el ventilador de enfriamiento del panel, expresada en la unidad establecida por la P.36.El ventilador de enfriamiento se inicia cuando la temperatura es> = a P.37 y se detuvo cuando es <que la P.38.
- P.39 Umbral para la generación de la alarma *de temperatura A08 Panel demasiado alto*.
- P.41 Umbral de alarma de tensión máxima, que se refiere a la tensión nominal fijado con P.07, más allá del cual el *voltaje* de alarma *A06* es *demasiado alto* generado.
- P.42 Umbral de alarma de mínima tensión, que se refiere a la tensión nominal fijado con P.07, por debajo del cual se genera la *tensión* A05 alarma *demasiado bajo*.
- P.43 tensión de la instalación de alarma de umbral máximo THD, más allá del cual la alarma *A10 THDV* se genera *demasiado alto*.
- P.44 Corriente máxima de instalación umbral de alarma THD a partir del cual se genera la *tensión* A05 alarma *demasiado bajo*.
- P.45 Intervalos de mantenimiento en horas. Cuando ha transcurrido, se generará el *mantenimiento ordinario* alarma A12.Los incrementos de recuento hora

siempre y cuando se alimenta el dispositivo. (**) Si el controlador está instalado en el gabinete ICAR

- P.46 Función de la semi-circular de gráfico de barras. Kvar ins / tot: El gráfico de barras representa la cantidad de kvar insertado realmente, con referencia a la potencia reactiva total instalada en el panel. Curr acto / nom: porcentaje de la corriente real de la planta con referencia a la corriente máxima de la CT. Delta kvar: gráfico de barras con cero central. Es el represts / delta-kvar negativa positiva necesaria para alcanzar el punto de ajuste, en comparación con el kvar instalada total.
- P.47 medida por defecto se muestra en la pantalla secundaria. Al establecer el parámetro a la putrefacción, las diferentes medidas se muestran con una rotación secuencial.
- P.48 Si está en ON, los retroiluminación de la pantalla parpadea en presencia de uno o más alarmas activas.
- P.49 (nodo) Dirección serie del protocolo de comunicación.
- P.50 Comunicación velocidad de transmisión del puerto.
- P.51 Formato de los datos. Configuración de 7 bits sólo se pueden utilizar para el protocolo ASCII.
- P.52 Stop número de bit.
- P.53 Seleccione el protocolo de comunicación.
- P.54 Define el número del paso (teniendo en cuenta el paso que tiene el mayor recuento) más allá del cual la A12 alarma de mantenimiento es generado. Este parámetro debe ser utilizado como una alternativa a P.45.If tanto P.45 y P.54 se establece en un valor distinto de OFF, a continuación, P.45 tiene prioridad. P.55 ... P60 Función de los relés de salida 9 ... 14. Véase la descripción del parámetro

COD	DESCRIPTION	ACC	UoM	DEF	RANGE
P.61	A01 permitir alarma	Adv		ALA	OFF ON ALA DISC A+D
P.62	A01 Retardo de la alarma	Adv		15	0-240
P.63	A01 retardo uom	Adv		min	Min Sec
P.94	A12 permitir alarma	Adv		ALA	OFF ON ALA DISC A+D
P.95	A12 retardo de la alarma	Adv		120	0-240
P.96	A12 Retardo UOM	Adv		sec	Min Sec

MENÚ DE ALARMA

14. Alarmas

• Cuando se genera una alarma, la pantalla mostrará un icono de alarma, el código y la descripción de la alarma en el idioma seleccionado.

• Si se pulsan las teclas de navegación en las páginas, el mensaje de desplazamiento que muestra las indicaciones de alarma desaparecerá momentáneamente, para volver a aparecer de nuevo después de 30 segundos.

• Las alarmas son reseteados automáticamente tan pronto como las condiciones de alarma que han generado desaparecer.

• En el caso de una o más alarmas, el comportamiento del regulador RPC 8LGA depende de los ajustes de las *propiedades* del activo alarma.

COD	ALARMA	DESCRIPCION
A01	subcompensaciones	En el modo automático, todos los pasos disponibles están conectados pero la cos-phi sigue siendo más inductiva al punto establecido.
A02	Compensación excesiva	En el modo automático, todos los pasos están desconectados pero el cosphi es aún más capacitivo al punto establecido.
A03	Corriente demasiado baja	La corriente que fluye en las entradas de corriente es inferior a la de medición mínimo distancia. Esta condición puede ocurrir normalmente si la planta no tiene carga.
A04	Corriente demasiado alta	La corriente que fluye en las entradas de corriente es inferior a la de medición mínimo distancia.
A05	Tensión demasiado baja	El voltaje medido es inferior al umbral fijado con P.42.
A06	Tensión demasiado alta	El voltaje medido es mayor que el umbral establecido con P.41.
A07	Condensador sobrecarga de corriente	La sobrecarga de corriente del condensador calculado es mayor que el umbral fijado con P.32 y P.33.Después de que las condiciones de alarma han desaparecido, el mensaje de alarma queda demostrado por la siguiente 5 min o hasta que el usuario pulsar una tecla en el frente.
A08	Temperatura demasiado alta	La temperatura del panel es superior al umbral establecido con P.39.
A09	Sin voltaje de liberación	Un comunicado sin tensión ha ocurrido en las entradas de tensión de línea, que dura más de 8 ms.

14.2 Descripción Alarma

A10	THD de voltaje demasiado alto	El THD de la tensión de la planta es mayor que el umbral establecido con P.43.
A11	THD de corriente demasiado alto	La distorsión armónica total de la corriente de la planta es mayor que el umbral establecido con P.44.
A12	Mantenimiento solicitado	El intervalo de mantenimiento ajustado, ya sea con o P.45 P.54 ha transcurrido

Para restablecer el menú de comandos de alarma Sede.

14.2. Características de los avisos por defectos

CÓDIGO	DESCRIPCIÓN	HABILITAR	RELÉ DE ALARMA	DESCONEXION	RETRASAR
A01	subcompensaciones	•	•		15 minutos
A02	Compensación excesiva				120 s
A03	Corriente demasiado baja	•	•	•	30 s
A04	Corriente demasiado alta	•	•		60 s
A05	Tensión demasiado baja	•	•		60 s
A06	Tensión demasiado alta	•	•	•	15 minutos
A07	Condensador de sobrecarga de o	corriente	•	•	3 min
A08	La temperatura es demasiado	alta	•	•	60 s
A09	Sin voltaje de liberación	•	•	•	0 s
A10	THD de voltaje demasiado al	to •	•	•	60 s
A11	THD de corriente demasiado	alto	•	•	60 s
A12	mantenimiento solicitado	•	•		Os

FUNCIONES DEL MENÚ

COD	DESCRIPCION	ACC	UoM	DEF	RANGE
				192.	
F.01	Indirizzo IP	Usr		168.1.1	IP1.IP2.IP3.IP4
					IP1 0255 / IP2 0255 / IP3 0255 / IP4 0255
F.02	Mascara de subred	Usr		0.0.0.0	SUB1.SUB2.SUB3.SUB4
					SUB1 0255 / SUB2 0255 / SUB3 0255 / SUB4
					0255
F.03	Porta IP	Usr		1001	09999
F.04	Cliente/servidor	Usr		Servidor	Clientes / servidor
F.05	Indirizzo IP remoto	Usr		0.0.0.0	IP1.IP2.IP3.IP4
					IP1 0255 / IP2 0255 / IP3 0255 / IP4 0255
F.06	Porta IP remota	Usr		1001	09999
	Indirizzo IP				
F.07	Gateway	Usr		0.0.00	GW1.GW2.GW3.GW4
					GW1 / GW2 / GW3 / GW4

F.01 F.03 ... - TCP-IP coordenadas de aplicación de la interfaz Ethernet.

F.04 - Activación de la conexión TCP-IP. Servidor = conexiones aguarda desde un cliente remoto. Cliente = incidan sobre una conexión con el control remoto servidor F.05 ... F.07 - Coordenadas para la conexión con el servidor remoto cuando F.04 se establece en cliente.

15. Comandos de menú

• El menú de comandos permite ejecutar algunas operaciones ocasionales como la lectura de picos de reajuste, contadores de compensación, alarmas restablecer, etc.

• Si se ha introducido la contraseña de nivel avanzado, a continuación, el menú de comandos permite la ejecución de las operaciones automáticas útil para la configuración del dispositivo.

• La siguiente tabla muestra las funciones disponibles en el menú de comandos, dividido por el nivel de acceso requerido.

• Con el regulador en modo MAN, pulsar la tecla mode durante 5 segundos.

- Pulse **A** para seleccionar CMD.
- Prensa para acceder al *menú de comandos*.
- Seleccione el comando deseado con

• Pulse y mantenga pulsado durante tres segundos ▲ si se desea ejecutar el comando seleccionado.

• Si se mantiene pulsado \blacktriangle hasta el final de la cuenta atrás se ejecuta el comando y la pantalla muestra OK, mientras que si suelte la tecla antes del final, el comando se cancela.

COD	COMANDO	PSW	DESCRIPCION
C01	Sin mantenimiento, rearme	Usr.	Restablecer intervalo de servicio de mantenimiento
C02	Recuento, paso de reposición	Adv.	Restablecer contadores de operaciones de paso
C03	Recorte paso de reposición	Adv.	Actualizar potencia programada originalmente en etapa de recorte.
C04	Horas paso de reposición	Adv.	Restablecer los contadores de horas de funcionamiento del paso.
C05	Restablecer valores	Adv.	Restablecer valores máximos
C06	Restablecer semanal	Usr.	Restablece la historia del factor de potencia total semanal.
C07	Configuración de default	Adv.	Restablece la programación de configuración por defecto de fábrica.
C08	Crear una copia de seguridad	Adv.	Hace una copia de seguridad de los ajustes de los parámetros de configuración del usuario.

• Para salir del menú presione y mantenga

16. Uso dongle WI-FI

- El dongle Wi-Fi ofrece capacidad Wi-Fi punto de acceso para la conexión al PC, tablet o smartphone. Además de esta función
- También ofrece la posibilidad de almacenar y transferir un bloque de datos desde/hacia el regulador RPC 8LGA.
- Inserte la interfaz de WI-FI en el puerto IR del regulador de RPC 8LGA en la placa frontal.
- Cambiar dongle Wi-Fi pulsando el botón durante 2 segundos.
- Espere hasta que el LED de *enlace* se vuelve intermitente naranja.
- Presione 3 veces consecutivas y rápido el botón dongle.
- En este punto, la pantalla del regulador RPC 8LGA muestra la primera de las 6 posibles comandos (D1 ... D6).
- •Pulse ▲ ▼ para seleccionar el comando deseado.
- Prensa Prensa para ejecutar el comando seleccionado. La unidad le pedirá una
- confirmación (OK?). Presione una vez más 🖾 para confirmar o mode cancelar.
- La siguiente tabla muestra los posibles comandos:

COD	COMANDO	DESCRIPCIÓN
D1	INICIO DE DISPOSITIVO→ CX02	Configuración de copias de configuración desde el controlador RPC 8LGA al dongle Wi-Fi.
D2	CONFIGURACIÓN CX02→ DISPOSITIVO	Configuración de instalación copia de WI- FI dongle al controlador RPC 8LGA.
D3	CLON DISPOSITIVO→ CX02	Copias de configuración y, a partir de datos de trabajo del controlador RPC 8LGA al dongle Wi- Fi.
D4	CLONE CX02 →DISPOSITIVO	Copias de configuración y, a partir de datos de trabajo, WI-FI dongle al controlador RPC 8LGA.
D5	INFORMACIÓN DE DATOS CX02	Muestra información sobre los datos

		almacenados en el dispositivo de seguridad de WI-FI.
D6	SALIDA	Sale del menú dongle.

Para más detalles, véase WI-FI manual de instrucciones dongle.

17. Instalación

• Controlador 8LGA está diseñado para la instalación de montaje empotrado. Con el montaje correcto, que garantiza la protección frontal IP54.

• Inserte el dispositivo en el orificio del panel, asegurándose de que la junta está correctamente colocado entre el panel y el dispositivo marco frontal.

• Desde el interior del panel, por cada cuatro de los clips de fijación, coloque el clip en su agujero cuadrado en el lado de la carcasa, luego moverlo hacia atrás con el fin de posicionar el gancho.

- Repita la misma operación para los cuatro clips.
- Apretar el tornillo de fijación con un par máximo de 0,5Nm.
- En caso de que sea necesario desmontar el sistema, repita los pasos en el orden opuesto.

• Para la conexión eléctrica ver los diagramas de cableado en el capítulo dedicado y los requisitos publicados en la tabla de características técnicas.

18. Los diagramas de cableado

¡ADVERTENCIA!

Desconecte la línea y el suministro cuando se opera en los terminales. Cableado trifásico estándar

La configuración estándar de conexión (por defecto) de cableado predeterminado trifásica para aplicaciones estándar.

Medida de voltaje	1 lectura de voltaje-ph-ph a L2-L3
Medida actual	fase L1
Ángulo de fase compensado	Entre V (L2-L3) y I (L1) \Box 90 °
Sobrecarga de condensador de medida actual	1 calculado en base a la lectura L2-L3
Ajuste de parámetros	P.03 = L1
	P.05 = L2-L3
	P.24 = 3PH

NOTAS

Para conexión trifásica, la entrada de tensión debe estar conectada de fase a fase; el transformador de corriente se debe conectar en la fase restante. La polaridad de la entrada de corriente / tensión es indiferente.

Cableado monofásico

Configuración de la conexión de cableado monofásico para aplicaciones monofásicasMedida de voltajelectura de la tensión 1 fase L1-NMedida actualfase L1Ángulo de fase compensadoEntre V (L1-N) y I (L1) \Box 0 °Sobrecarga de condensador de medida actual1 lectura calculada en L1-NAjuste de parámetrosP.03 = L1P.05 = L1-NP.24 = 1 PH

NOTAS

¡IMPORTANTE!

• La polaridad de la entrada de corriente / tensión es indiferente.

Cableado MV

Configuración con la medición y corrección MVMedida de voltaje1-ph-ph de lectura de voltaje L2-L3 en la parte de MTMedida actualfase L1 en el lado MVÁngulo de fase compensado90 °Sobrecarga de condensador de medida actualdiscapacitadoAjuste de parámetrosP.03 = L1P.34 = VT1 primariaP.05 = L2-L3P.35 = VT1 secundariaP.24 = 3PHP.34 = 3PH

19. Terminales Posición

20. Dimensiones mecánicas y corte del panel frontal (mm)

21. Características técnicas

Suministro		
	100 - 440V ~	
l'ension nominal de nosotros	110 - 250 V =	
Tansián de funcionamiente	90 - 484V~	
Tension de funcionalmento	93,5 - 300 V =	
Frecuencia	45 - 66Hz	
Consumo de energía / disipación	2.5W - 7VA	
Sin voltaje de liberación	> = 8 ms	
Tiempo de la inmunidad para	<= 25 ms	
microbreakings		
Fusibles recomendados	F1A (fast)	
Entradas de tensión		
Máxima tensión nominal Ue	600V~	
Rango de medición	50 720V	
Rango de frecuencia	45 65 Hz	
Método de medición	true RMS	
Medición de la impedancia de entrada	$> 15M\Omega$	
La exactitud de la medición	$1\% \pm 0.5$ dígitos	
fusibles recomendados	F1A (Fast)	

Entradas de corriente				
Nominal Ie	1A~ o 5A~			
Pango de medición	Para la escala 5A: 0,025 - 6A~			
	Para la escala 1A: 0,025 - 1.2A~			
	Derivación suministrada por un			
Tipo de entrada	transformador de corriente externa (baja			
	tensión). Max. 5A			
método de medición	true RMS			
capacidad de sobrecarga	+ 20% Ie			
pico de sobrecarga	50A durante 1 segundo			
La exactitud de la medición	\pm 1% (0,1 1,2In) \pm 0,5 dígitos			
El consumo de energía	<0.6VA			
Precisión de medida				
Línea de voltaje	$\pm 0.5\%$ fs ± 1 digit			
Salida de relé OUT de 1 - 7				
Tipo de Contacto	7 x 1 NA + contacto común			
	B300, 5A 250V~			
Clasificación UL	30V = 1A Trabajo Piloto, 1.5A 440V~			
	Trabajo Piloto			
Tensión máxima puntuación	440V~			
Corriente nominal	AC1-5A 250V~ AC15-1,5ª 440V~			
Corriente máxima en contacto común	10 A			
Resistencia mecánica / eléctrica	$1x10^{7}/1x10^{5}$ ops			
Salida de relé OUT 8				
Tipo de Contacto	1 conmutado			
	B300, 5A 250V~			
Clasificación III	30V = 1A Trabajo Piloto, 1.5A 440V			
	Trabajo Piloto			
Tensión máxima puntuación	440V~			
corriente nominal	AC1-5A 250V~ AC15-1,5ª 440V~			
Resistencia mecánica / eléctrica	$1x10^{7}/1x10^{5}$ ops			
Tensión de aislamiento				
Ui Tensión de aislamiento	600V~			
Resistencia al impulso de sobretensión UI	9.5Kv			
Frecuencia de red Tensión soportada	5,2kV			
Condiciones ambientales de funcionamiento				
Temperatura de funcionamiento	-20 - + 60 ° C			
Temperatura de almacenamiento	-30 - + 80 ° C			
Humedad relativa	<80% (IEC / EN 60068-2-78)			
Máximo grado de contaminación	2			
Categoría de sobrevoltaje	3			
La categoría de medida	III			
Secuencia climática	Z / ABDM (IEC / EN 60068-2-61)			
Resistencia a los golpes	15g (IEC / EN 60068-2-27)			

resistencia de vibración	0,7 g (IEC / EN 60068-2-6)	
Conexiones		
tipo de Terminal	Plug-in / extraíble	
Sección del cable (min max)	0,2 2,5 mm ² (24 12 AWG)	
Clasificación UL	$0.75 - 2.5 \text{ mm}^2 (18 - 12 \text{ AWC})$	
Sección del cable (min max)	0,75 2,5 IIIII ² (18 12 AWO)	
par de apriete	0,56 Nm (5 lbin)	
Alojamiento		
Versión	Montaje empotrado	
Material	policarbonato	
Grado de protección	IP54 en la parte frontal con junta -	
Grado de protección	terminales IP20	
Peso	640g	
Certificaciones y cumplimiento		
cULus	Pendiente	
	IEC /EN 61010-1, IEC / EN 61000-6-2	
Estándares de referencia	IEC / EN 61000-6-4	
	UL508 y CSA C22.2 N ° 14	
	utilize selements $(0, 0, 0, 175, 0, 0, d_{0}, c_{0}h_{0})$	
	(CL) de conductor	
	(CU) de conductor	
	AWG Rango: 18 - 12 AWG trenzado o	
Marcado UL	sólido.	
	Los terminales de campo Par de apriete:	
	4.5lb.in	
	El montaje en una carcasa tipo de panel	
	plano 1	

SCHEMI DI COLLEGAMENTO / WIRING DIAGRAMS

ATTENZIONE!

WARNING!

Togliere sempre tensione quando si opera sui morsetti. Disconnect the line and the supply when operating on terminals.

17.1 INSERZIONE TRIFASE STANDARD / STANDARD THREE-PHASE CONNECTION

INSERZIONE TRIFASE STANDARD (default) Configurazione di default per applicazioni standard			
ura tensione 1 misura di tensione concatenata L2-L3			
Misura corrente	Fase L1		
Angolo di sfasamento	lo di sfasamento $Fra V (L2-L3) e I (L1) \Rightarrow 90^{\circ}$		
Misura sovraccarico condensatori	ura sovraccarico condensatori 1 misura calcolata su L2-L3		
mpostazione parametri P.03 = L1 - P.05 = L2-L3 - P.24 = 3PH			
NOTE			
Per inserzione trifase, l'ingresso voltmetrico deve essere connesso tra due fasi; il T.A. di linea deve essere inserito sulla rimanente fase. La polarità dell'ingresso amperometrico è ininfluente.			
THREE-PHASE STANDARD CONNECTION (default) Default wiring configuration for standard applications			
Voltage measure	⁷ oltage measure 1 ph-to-ph voltage reading L2-L3		
Current measure	urrent measure L1 phase		
Between V (I.2-L3) and I (I.1) \Rightarrow 90°			

Thase angle offset	between $V(L2-L3)$ and $I(L1) = 30$	
Capacitor overload current measure	1 reading calculated on L2-L3	
Parameter setting	P.03 = L1 - P.05 = L2 - L3 - P.24 = 3PH	
NOTES		

For three-phase connection, the voltage input must be connected phase to phase; the current transformer must be connected on the remaining phase. The polarity of the current/voltage input is indifferent.

17.2 INSERZIONE MONOFASE / SINGLE-PHASE CONNECTION

INSERZIONE MONOFASE Configurazione per applicazioni con rifasamento monofase		
ra tensione l misura di tensione di fase L1-N		
Misura corrente	Fase L1	
Angolo di sfasamento	Fra V (L1-N)e I (L1) $\Rightarrow 0^{\circ}$	
Sovraccarico condensatori	1 misura calcolata su L1-N	
postazione parametri P.03 = L1 - P.05 = L1-N - P.24 = 1PH		
NOTE		
IMPORTANTE! La polarità dell'ingresso amperometrico è ininfluente.		
SINGLE-PHASE CONNECTION Wiring configuration for single-phase applications		
SINGLE-PHASE CONNECTION Wiring configuration for single-phase app	ications	
SINGLE-PHASE CONNECTION Wiring configuration for single-phase app Voltage measure	ications 1 phase voltage reading L1-N	
SINGLE-PHASE CONNECTION Wiring configuration for single-phase app Voltage measure Current measure	ications 1 phase voltage reading L1-N L1 phase	
SINGLE-PHASE CONNECTION Wiring configuration for single-phase app Voltage measure Current measure Phase angle offset	ications 1 phase voltage reading L1-N L1 phase Between V (L1-N) and I (L1) ⇔ 0°	
SINGLE-PHASE CONNECTION Wiring configuration for single-phase app Voltage measure Current measure Phase angle offset Capacitor overload current measure	ications 1 phase voltage reading L1-N L1 phase Between V (L1-N) and I (L1) ⇔ 0° 1 reading calculated on L1-N	
SINGLE-PHASE CONNECTION Wiring configuration for single-phase app Voltage measure Current measure Phase angle offset Capacitor overload current measure Parameter setting	ications	
SINGLE-PHASE CONNECTION Wiring configuration for single-phase app Voltage measure Current measure Phase angle offset Capacitor overload current measure Parameter setting NOTES	ications 1 phase voltage reading L1-N L1 phase Between V (L1-N) and I (L1) ⇔ 0° 1 reading calculated on L1-N P.03 = L1 - P.05 = L1-N - P.24 = 1PH	

17.3 INSERZIONE SU MT / CONFIGURATION IN MV

INSERZIONE CON MISURE SU	J MT E RIFASAMENTO IN BT			
Misura tensione	1 misura di tensione concatenata	1 misura di tensione concatenata L2-L3 su media tensione		
Misura corrente	Fase L1 su media tensione	Fase L1 su media tensione		
Angolo di sfasamento	90°	90°		
Impostazione parametri	P.03 = L1 P.05 = L2-L3 P.24 = 3PH	P.03 = L1 P34 = Primario VT1 P.05 = L2-L3 P35 = Secondario VT1 P.24 = 3PH P35 = Secondario VT1		
CONFIGURATION WITH MV MEASUREMENT AND CORRECTION				
Voltage measure	1 ph-to-ph voltage reading L2-L	1 ph-to-ph voltage reading L2-L3 on MV side		
Current measure	L1 phase on MV side	L1 phase on MV side		
Phase angle offset	90°	90°		
Parameter setting	P.03 = L1 P.05 = L2-L3 P.24 = 3PH	P.34 = VT1 primary P.35 = VT1 secondary		

MORSETTI / TERMINALS

DIMENSIONI E FORATURA / DIMENSIONS & CUTOUT [mm]

CARATTERISTICHE TECNICHE / TECHNICAL CHARACTERISTICS

Alimentazione	Supply	
Tensione nominale Us 0 Rated voltage Us 0		100 - 440V~ 110 - 250V=
Limiti di funzionamento	Operating voltage range	90 - 484V~ 93,5 - 300V=
Frequenza	Frequency	45 - 66Hz
Potenza assorbita/dissipata	Power consumption/dissipation	2,5W – 7VA
Rilascio relè alla microinterruzione	No-voltage release	>= 8ms
Tempo di immunità alla microinterruzione	Immunity time for microbreakings	<= 25ms
Fusibili raccomandati	Recommended fuses	F1A (rapidi)
Ingresso voltmetrico	Voltage inputs	
Tensione nominale Ue max	Maximum rated voltage Ue	600VAC
Campo di misura	Measuring range	50720V
Campo di frequenza	Frequency range	4565Hz
Tipo di misura	Measuring method	True RMS
Impedenza dell'ingresso di misura	Measuring input impedance	$> 15M\Omega$
Accuratezza misura	Accuracy of measurement	$\pm 1\% \pm 0.5$ digit
Fusibili raccomandati	Recommended fuses	F1A (rapidi)
Ingressi amperometrici	Current inputs	
Corrente nominale Ie	Rated current Ie	1A~ o 5A~
Campo di misura	Measuring range	5A: 0,025 - 6A - 1A: 0,025 - 1,2A~
Tipo di ingresso	Type of input	TA ext bt / Lv ext CT / TI ext bt 5A max.
Tipo di misura	Measuring method	True RMS
Limite termico permanente	Overload capacity	+20% Ie
Limite termico di breve durata	Overload peak	50A / 1 sec
Accuratezza misura	Accuracy of measurement	± 1% (0,11,2In) ±0,5 digit
Autoconsumo	Power consumption	<0,6VA
Precisione misure	Measuring accuracy	
Tensione di linea	Line voltage	±0,5% f.s. ±1digit
Uscite a relè: OUT 1 - 7	Relay output: OUT 1 - 7	
Tipo di contatto	Contact type	7x1 NO+comune contatti/contacts common
Dati d'impiego UL	UL Rating	B300, 5A 250V~ 30V= 1A Pilot Duty, 1,5A 440V~ Pilot Duty
Massima tensione d'impiego	Max rated voltage	440V~
Portata nominale	Rated current	AC1-5A 250V~ AC15-1,5A 440V~
Corrente massima al terminale comune dei contatti	Maximum current at contact common	10A

ICAR by ORTEA NEXT

		ALL// TEDZI
Durata meccanica / elettrica	Mechanical / electrical duration	1x10 ⁷ / 1x10 ⁵ operazioni / operations
Uscite a relè: OUT 8	Relay output: OUT 8	
Tipo di contatto	Contact type	1 contatto scambio/changeover contact
Dati d'impiego UL	UL Rating	B300, 5A 250V~ 30V= 1A Pilot Duty, 1,5A 440V~ Pilot Duty
Massima tensione d'impiego	Max rated voltage	440V~
Portata nominale	Rated current	AC1-5A 250V~ AC15-1,5A 440V~
Durata meccanica / elettrica	Mechanical / electrical duration	1x107 / 1x105 operazioni / operations
Tensione di isolamento	Insulation voltage	
Tensione nominale d'isolamento Ui	Rated insulation voltage Ui	600V~
Tensione nomi.di tenuta a impulso Uimp	Rated impulse withstand voltage Uimp	9,5kV
Tensione di tenuta a frequenza d'esercizio	Power frequency withstand voltage	5,2kV
Condizioni di funzionamento	Operating conditions	
Temperatura d'impiego	Operating temperature	-20 - +60°C
Temperatura di stoccaggio	Storage temperature	-30 - +80°C
Umidità relativa	Relative humidity	<80% (IEC/EN 60068-2-78)
Inquinamento ambiente massimo	Maximum pollution degree	Grade 2
Categoria di sovratensione	Overvoltage category	3
Categoria di misura	Measurement category	III
Sequenza climatica	Climatic sequence	Z/ABDM (IEC/EN 60068-2-61)
Resistenza agli urti	Shock resistance	15g (IEC/EN 60068-2-27)
Resistenza alle vibrazioni	Vibration resistance	0.7g (IEC/EN 60068-2-6)
Connessioni	Connections	
Tipo di morsetti	Terminal type	Estraibili / Removable
Sezione conduttori (min e max)	Cable cross section (min max)	0,22,5 mmq (24÷12 AWG)
Dati d'impiego UL Sezione conduttori (min e max)	UL Rating: Cable cross section (min max)	0,752.5 mm ² (18-12 AWG)
Coppia di serraggio	Tightening torque	0,56 Nm (5 LBin)
Contenitore	Housing	
Esecuzione	Version	Da incasso / Flash mount
Materiale	Material	Policarbonato / Polycarbonate
Grado di protezione frontale	Degree of protection	IP54 fronte con guarnizione /front with gasket IP20 morsetti/terminals
Peso	Weight	640g
Omologazioni e conformità	Certifications and compliance	
cULus	cULus	In corso/Pending
Conformità a norme	Reference standards	IEC/EN 61010-1, IEC/EN 61000-6-2 IEC/ EN 61000-6-4 UL508 e CSA C22.2-N°14
UL Marking		Use 60°C/75°C copper (CU) conductor only AWG Range: 18 - 12 AWG stranded or solid Field Wiring Terminals Tightening Torque: 4.5lb.in Flat panel mounting on a Type 1 enclosure

O Alimentazione ausiliaria prelevata da un sistema con tensione fase-neutro $\leq 300V / Auxiliary supply connected to a line with a phase-neutral voltage <math>\leq 300V$